TIP3055 (NPN), TIP2955 (PNP)

Complementary Silicon Power Transistors

Designed for general-purpose switching and amplifier applications.

Features

• DC Current Gain -

 $h_{FE} = 20-70 @ I_C$ = 4.0 Adc

• Collector–Emitter Saturation Voltage – $V_{CE(sat)}$ = 1.1 Vdc (Max) @ I_C

 $= 4.0 \,\mathrm{Adc}$

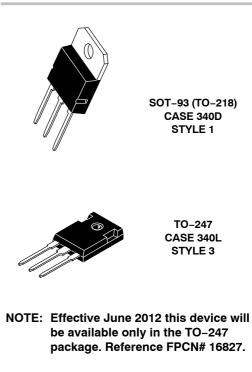
- Excellent Safe Operating Area
- These are Pb-Free Devices*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	60	Vdc
Collector – Emitter Voltage	V _{CER}	70	Vdc
Collector – Base Voltage	V _{CB}	100	Vdc
Emitter – Base Voltage	V _{EB}	7.0	Vdc
Collector Current – Continuous	۱ _C	15	Adc
Base Current	Ι _Β	7.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	90 0.72	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 to +150	°C

THERMAL CHARACTERISTICS

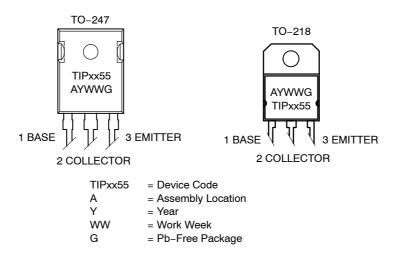
Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.39	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	35.7	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

15 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 60 VOLTS, 90 WATTS


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

TIP3055 (NPN), TIP2955 (PNP)

MARKING DIAGRAMS

ORDERING INFORMATION

Device	Package	Shipping
TIP3055G	SOT-93 (TO-218) (Pb-Free)	30 Units / Rail
TIP2955G	SOT-93 (TO-218) (Pb-Free)	30 Units / Rail
TIP3055G	TO–247 (Pb–Free)	30 Units / Rail
TIP2955G	TO–247 (Pb–Free)	30 Units / Rail

TIP3055 (NPN), TIP2955 (PNP)

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	·			
Collector–Emitter Sustaining Voltage (Note 1) $(I_C = 30 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	60	-	Vdc
Collector Cutoff Current (V _{CE} = 70 Vdc, R _{BE} = 100 Ohms)	I _{CER}	-	1.0	mAdc
Collector Cutoff Current ($V_{CE} = 30 \text{ Vdc}, I_B = 0$)	I _{CEO}	_	0.7	mAdc
Collector Cutoff Current (V _{CE} = 100 Vdc, V _{BE(off)} = 1.5 Vdc)	I _{CEV}	_	5.0	mAdc
Emitter Cutoff Current ($V_{BE} = 7.0 \text{ Vdc}, I_{C} = 0$)	I _{EBO}	-	5.0	mAdc
ON CHARACTERISTICS (Note 1)				-
DC Current Gain ($I_C = 4.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}$) ($I_C = 10 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}$)	h _{FE}	20 5.0	70 -	-
Collector–Emitter Saturation Voltage ($I_C = 4.0 \text{ Adc}, I_B = 400 \text{ mAdc}$) ($I_C = 10 \text{ Adc}, I_B = 3.3 \text{ Adc}$)	V _{CE(sat)}		1.1 3.0	Vdc
Base-Emitter On Voltage (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc)	V _{BE(on)}	_	1.8	Vdc
SECOND BREAKDOWN				
Second Breakdown Collector Current with Base Forward Biased (V_{CE} = 30 Vdc, t = 1.0 s; Nonrepetitive)	I _{s/b}	3.0	-	Adc
DYNAMIC CHARACTERISTICS				
Current Gain — Bandwidth Product $(I_C = 0.5 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz})$	f _T	2.5	-	MHz
Small–Signal Current Gain (V _{CE} = 4.0 Vdc, I _C = 1.0 Adc, f = 1.0 kHz)	h _{fe}	15	-	kHz

NOTE: For additional design curves, refer to electrical characteristics curves of 2N3055.

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

TIP3055 (NPN), TIP2955 (PNP)

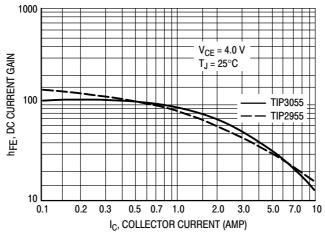
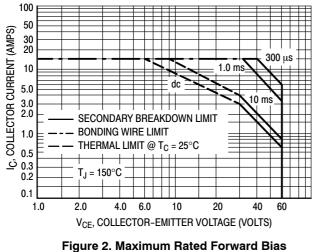
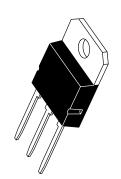



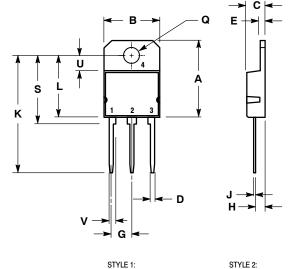
Figure 1. DC Current Gain



Safe Operating Area

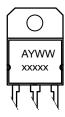
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated for temperature.



SOT-93 (TO-218) CASE 340D-02 **ISSUE E**

DATE 01/03/2002



PIN 1. BASE 2. COLLECTOR 3. 4. EMITTER COLLECTOR

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIN	MILLIMETERS INCHES		HES
DIM	MIN	MAX	MIN	MAX
Α		20.35		0.801
В	14.70	15.20	0.579	0.598
C	4.70	4.90	0.185	0.193
D	1.10	1.30	0.043	0.051
Ε	1.17	1.37	0.046	0.054
G	5.40	5.55	0.213	0.219
Н	2.00	3.00	0.079	0.118
J	0.50	0.78	0.020	0.031
K	31.00	REF	1.220 REF	
L		16.20		0.638
Q	4.00	4.10	0.158	0.161
S	17.80	18.20	0.701	0.717
U	4.00 REF		0.157 REF	
۷	1.75	1.75 REF		69

MARKING DIAGRAM

А = Assembly Location Y = Year ww = Work Week

XXXXX = Device Code

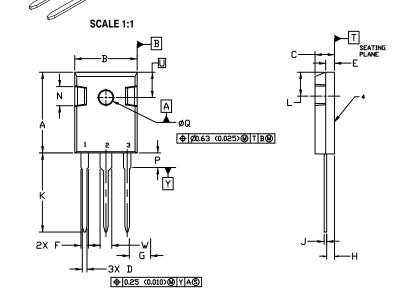
Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASB42643B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-93 PAGE 1 OF 1 ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

PIN 1. ANODE 2. CATHODE

ANODE
ANODE
CATHODE

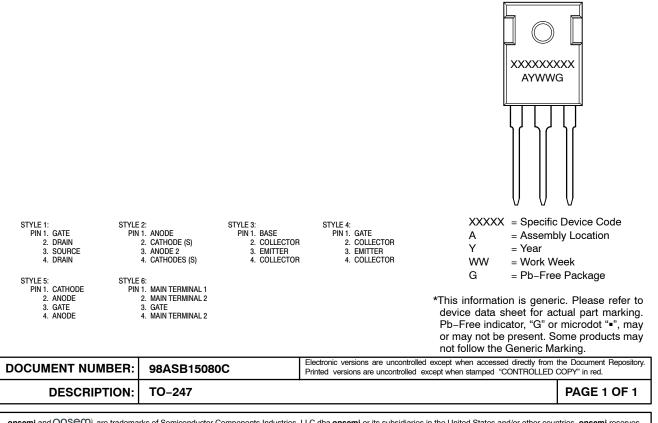
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS


Onsemi

TO-247 CASE 340L **ISSUE G**

DATE 06 OCT 2021



- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	HES
DIM	MIN.	MAX.	MIN.	MAX.
Α	20.32	21.08	0.800	0.830
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
к	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15	6.15 BSC		BSC
V	2.87	3.12	0.113	0.123

GENERIC **MARKING DIAGRAM***

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>