Boca Semiconductor Corp. BSC

http://www.bocasemi.com

MAXIMUM RATINGS

Rating	Symbol	2N3250 2N3251	2N3251A	Unit
Collector-Emitter Voltage	VCEO	-40	-60	Vdc
Collector-Base Voltage	V _{CBO}	- 50	-60	Vdc
Emitter-Base Voltage	V _{EBO}	_	5.0	Vdc
Collector Current	ίc	- 200		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 6.9		Watts mW/°C
Operating and Storage Temperature Temperature Range	Tj, T _{stg}	-65 to	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit		
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	486	°C/W		
Thermal Resistance, Junction to Case	Reic	146	°C/W		

2N3250 2N3251,A*

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

GENERAL PURPOSE TRANSISTORS

PNP SILICON

★2N3251A is a Motorola designated preferred device.

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					-
Collector-Emitter Breakdown Voltage(1) (I _C = -10 mAdc)	2N3250, 2N3251 2N3251A	V(BR)CEO	-40 -60	_	Vdc
Collector-Base Breakdown Voltage $\{I_C = -10 \mu Adc\}$	2N3250, 2N3251 2N3251A	V(BR)CBO	-50 -60	_	Vdc
Emitter-Base Breakdown Voltage IE = -10μ Adc)		V(BR)EBO	-5.0	_	Vdc
Collector Cutoff Current (V _{CE} = -40 Vdc, V _{EB} = -3.0 Vdc)		ICEX		-20	nA
Base Cutoff Current $(V_{CE} = -40 \text{ Vdc}, V_{EB} = -3.0 \text{ Vdc})$		İBL	_	50	nAdd
ON CHARACTERISTICS					
DC Forward Current Transfer Ratio $(I_C = -0.1 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$	2N3250 2N3251, 2N3251A	hFE	40 80	_	_
$(I_C = -1.0 \text{ mAdc Voc} = -1.0 \text{ Vdc})$	2N3250		45		

DC Forward Current Hansler Natio		i nee			
$(I_C = -0.1 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$	2N3250		40	_	ĺ
	2N3251, 2N3251A		80	_	
$(I_C = -1.0 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$	2N3250		45	_	
	2N3251, 2N3251A		90	_	
$\{I_C = -10 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc}\}(1)$	2N3250		50	150	
-	2N3251, 2N3251A		100	300	
$(I_C = -50 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})(1)$	2N3250		15	_	
-	2N3251, 2N3251A		30		
Collector-Emitter Saturation Voltage (1)		V _{CE(sat)}			Vdc
$(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$			—	-0.25	
$(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$			–	-0.5	
Base-Emitter Saturation Voltage (1)		V _{BE(sat)}			Vdc
$\{I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc}\}$			-0.6	-0.9	
$(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$			l —	- 1.2	}

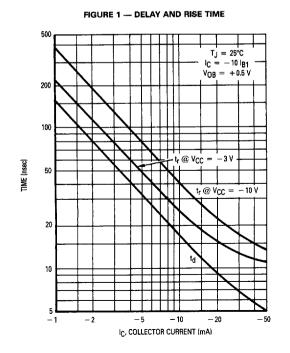
SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product (IC = -10 mAdc, VCE = -20 Vdc, f = 100 MHz)	2N3250 2N3251, 2N3251A	fŢ	250 300	_	MHz
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 1.0 MHz)		Cobo	_	6.0	pF
Input Capaciatance (VEB = -1.0 Vdc, IC = 0 , f = 1.0 MHz)		C _{ibo}	_	8.0	pF

2N3250 2N3251,A

ELECTRICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Input impedance (I _C = -1.0 mA, V _{CE} = -10 V, f = 1.0 kHz)	2N3250 2N3251, 2N3251A	hje	1.0 2.0	6.0 12	kohms
Voltage Feedback Ratio $(I_C = -1.0 \text{ mA, V}_{CF} = -10 \text{ V, f} = 1.0 \text{ kHz})$	2N3250 2N3251, 2N3251A	h _{re}	_	10 20	X 10-4
Small-Signal Current Gain $(I_C = -1.0 \text{ mA, V}_{CE} = -10 \text{ V, f} = 1.0 \text{ kHz})$	2N3250 2N3251, 2N3251A	h _{fe}	50 100	200 400	_
Output Admittance (IC = -1.0 mA, VCE = -10 V, f = 1.0 kHz)	2N3250 2N3251, 2N3251A	h _{oe}	4.0 10	40 60	μ mhos
Collector Base Time Constant (IC = -10 mA, VCE = -20 V, f = 31.8 MHz)		rb'CC	_	250	ps
Noise Figure (IC = $-100 \ \mu\text{A}$, VCE = $-5.0 \ \text{V}$, RS = $1.0 \ \text{k}\Omega$, f = $100 \ \text{Hz}$)		NF	_	6.0	dB


SWITCHING CHARACTERISTICS

	Characteristic		Symbol	Max	Unit
Delay Time	$(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = +0.5 \text{ Vdc})$		td	35	ns
Rise Time	$I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mA})$		tr	35	ns
Storage Time	$I_C = -10 \text{ mAdc}, I_{B1} = I_{B1} = -1.0 \text{ mAdc}$ $(V_{CC} = -3.0 \text{ V})$	2N3250 2N3251, 2N3251A	ts	175 200	ns
Fall Time			tf	50	ns

⁽¹⁾ Pulse Test: PW = 300 μ s, Duty Cycle = 2.0%.

http://www.bocasemi.com

SWITCHING TIME CHARACTERISTICS

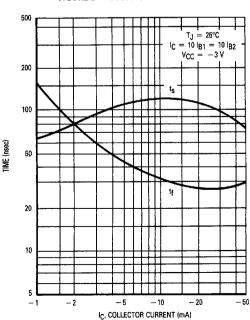
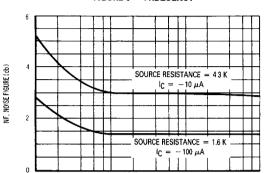
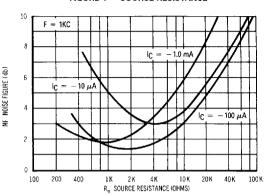


FIGURE 2 - STORAGE AND FALL TIME

http://www.bocasemi.com

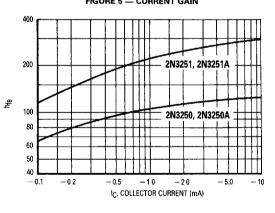

10KC 20KC 40KC

2N3250 2N3251,A


AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 6.0 \text{ V}, T_A = 25^{\circ}\text{C})$

FIGURE 4 — SOURCE RESISTANCE



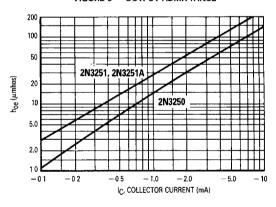
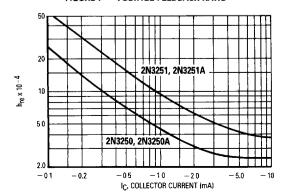
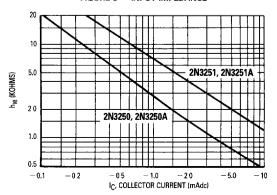
h PARAMETERS $V_{CE} = 10 \text{ V}, f = 1.0 \text{ kc}, T_A = 25^{\circ}\text{C}$

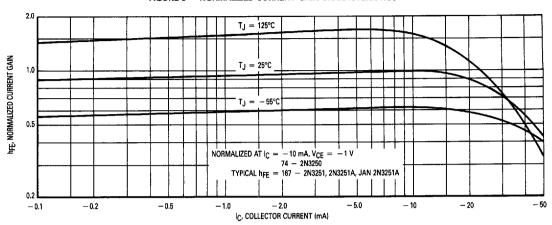
FIGURE 5 — CURRENT GAIN

f. FREQUENCY (CYCLES)

100 200 400

FIGURE 6 — OUTPUT ADMITTANCE


FIGURE 7 — VOLTAGE FEEDBACK RATIO

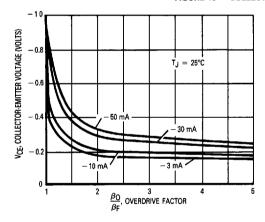
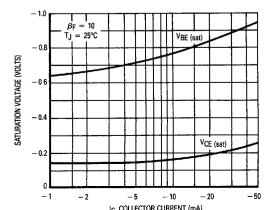
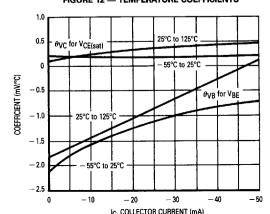
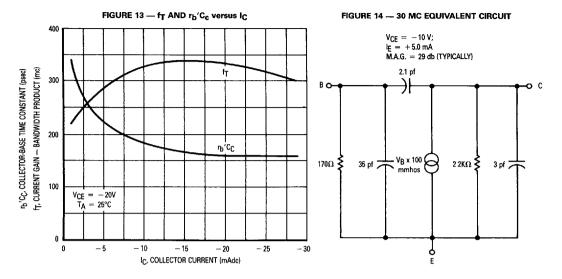

FIGURE 8 -- INPUT IMPEDANCE

FIGURE 10 -- COLLECTOR SATURATION REGION


http://www.bocasemi.com

This graph shows the effect of base current on collector current β_O is the current gain of the transistor at 1 volt, and β_F (forced gain) is the ratio of $|c|/|g_F$ in a circuit EXAMPLE- For type 2N3251, estimate a base current $(|g_F|)$ to insure saturation at a temperature of 25°C and a collector current of 10 mA


Observe that at $l_C=10\,\text{mA}$ an overdrive factor of at least 2.5 is required to drive the transistor well into the saturation region. From Figure 1, it is seen that here 20 1 volt is typically 167 (guaranteed limits from the Table of Characteristics can be used for "worst case" design).


$$\frac{\beta_{\rm O}}{\beta_{\rm F}} = \frac{h_{\rm FE} @~1~{\rm Volt}}{|_{\rm C}/I_{\rm BF}} \qquad 2.5 = \frac{167}{10~{\rm mA/I_{BF}}} \qquad {\rm IgF} \approx -6.68~{\rm mA}$$

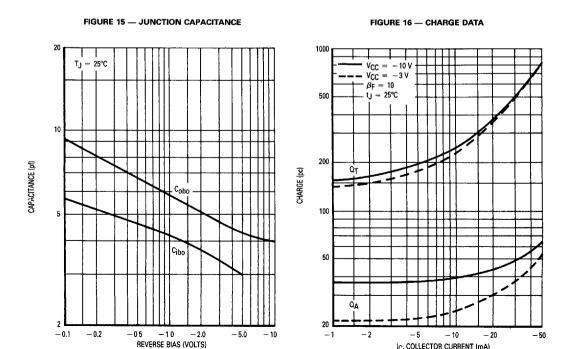


FIGURE 12 — TEMPERATURE COEFFICIENTS

http://www.bocasemi.com

