
Switching Transistors NPN Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.5	Vdc
Collector Current (10 μs pulse)	IC(Peak)	500	mA
Collector Current — Continuous	IC	200	mA
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.36 2.06	Watt mW/°C
Total Device Dissipation @ T _C = 100°C Derate above 100°C	PD	0.68 6.85	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	486	°C/W
Thermal Resistance, Junction to Case	$R_{ heta JC}$	147	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I _C = 10 μA, V _{BE} = 0)		V(BR)CES	40	_	Vdc
Collector-Emitter Sustaining Voltage ⁽¹⁾ (I _C = 10 mAdc, I _B = 0)		VCEO(sus)	15	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μA, I _B = 0)		V(BR)CBO	40	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V(BR)EBO	4.5	_	Vdc
Collector Cutoff Current ($V_{CB} = 20 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 20 \text{ Vdc}$, $I_{E} = 0$, $T_{A} = 150^{\circ}\text{C}$)	2N2369 2N2369A	ICBO	_ _	0.4 30	μAdc
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 0)	2N2369A	ICES	_	0.4	μAdc
Base Current (V _{CE} = 20 Vdc, V _{BE} = 0)	2N2369A	IB	_	0.4	μAdc

^{1.} Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$.

Preferred devices are Motorola recommended choices for future use and best overall value.

*Motorola Preferred Device

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

2N2369 2N2369A

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 10 mAdc, V _{CE} = 1.0 Vdc)	2N2369 2N2369A	hFE	40 —	120 120	_
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}, T_A = -55^{\circ}C)$	2N2369		20	_	
(I _C = 10 mAdc, V _{CE} = 0.35 Vdc, T _A = -55° C) (I _C = 30 mAdc, V _{CE} = 0.4 Vdc)	2N2369A 2N2369A		20 30	_	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N2369A		20	_	
$(I_C = 100 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$	2N2369		20	_	
Collector-Emitter Saturation Voltage ⁽¹⁾ (I _C = 10 mAdc, I _B = 1.0 mAdc)	2N2369 2N2369A	VCE(sat)		0.25 0.20	Vdc
$(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}, T_A = +125^{\circ}C)$ $(I_C = 30 \text{ mAdc}, I_B = 3.0 \text{ mAdc})$	2N2369A 2N2369A			0.30 0.25	
$(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	2N2369A		_	0.50	
Base-Emitter Saturation Voltage(1) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 10 mAdc, IB = 1.0 mAdc, $T_A = +125^{\circ}C$) (IC = 10 mAdc, IB = 1.0 mAdc, $T_A = -55^{\circ}C$) (IC = 30 mAdc, IB = 3.0 mAdc)	All Types 2N2369A 2N2369A 2N2369A	VBE(sat)	0.70 0.59 —	0.85 — 1.02 1.15	Vdc
$(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$	2N2369A		_	1.60	
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		fΤ	500	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	4.0	pF
Input Capacitance (VEB = 1.0 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	4.0	pF
SWITCHING CHARACTERISTICS					
Storage Time ($I_C = I_{B1} = 10 \text{ mAdc}$, $I_{B2} = -10 \text{ mAdc}$)		t _S	_	13	ns
Turn–On Time (I _C = 10 mAdc, I _{B1} = 3.0 mA, I _{B2} = -1.5 mA, V _{CC} = 3.0 Vdc	c)	^t on	_	12	ns
Turn–Off Time (I _C = 10 mAdc, I _{B1} = 3.0 mA, I _{B2} = -1.5 mA, V _{CC} = 3.0 Vdc	c)	t _{off}	_	18	ns

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS FOR 2N2369, 2N3227

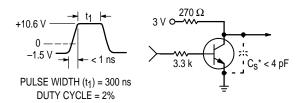


Figure 1. ton Circuit — 10 mA

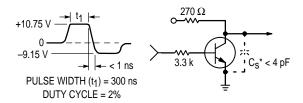


Figure 3. toff Circuit — 10 mA

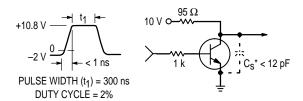


Figure 2. ton Circuit — 100 mA

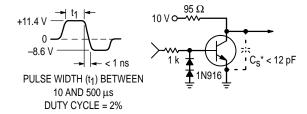


Figure 4. toff Circuit — 100 mA

^{*} Total shunt capacitance of test jig and connectors.

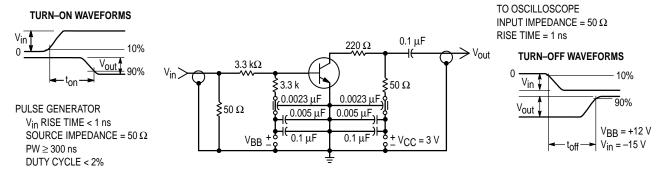
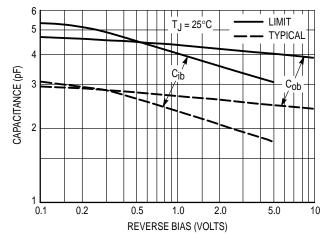



Figure 5. Turn-On and Turn-Off Time Test Circuit

Figure 6. Junction Capacitance Variations

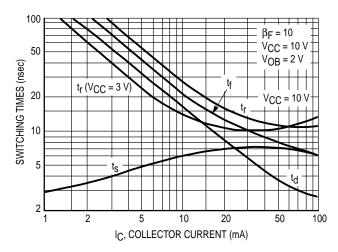


Figure 7. Typical Switching Times

2N2369 2N2369A

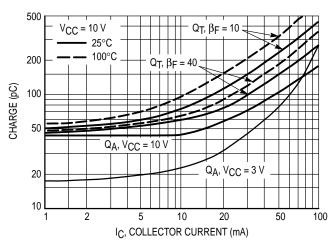


Figure 8. Maximum Charge Data

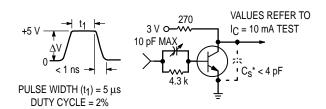


Figure 9. Q_T Test Circuit

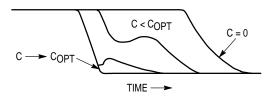


Figure 10. Turn-Off Waveform

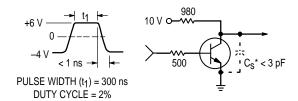


Figure 11. Storage Time Equivalent Test Circuit

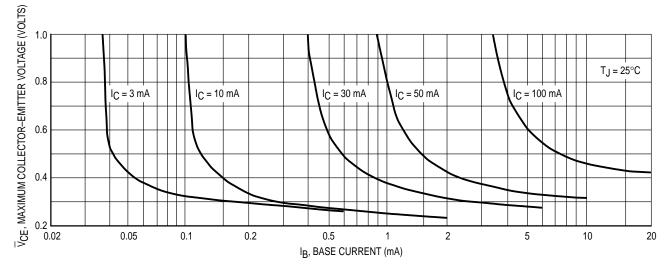
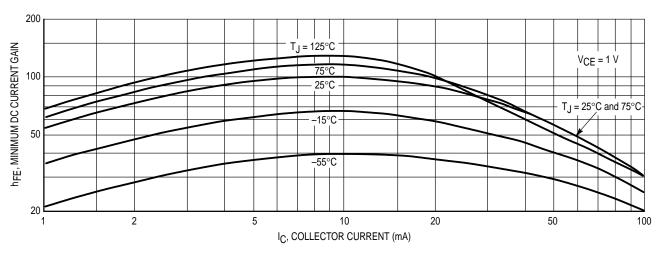



Figure 12. Maximum Collector Saturation Voltage Characteristics

Figure 13. Minimum Current Gain Characteristics

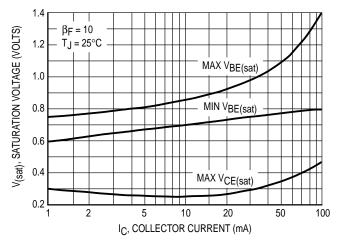
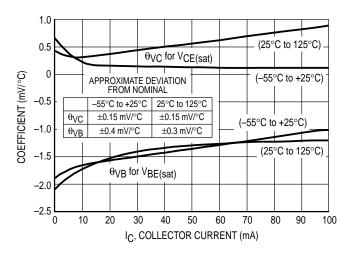
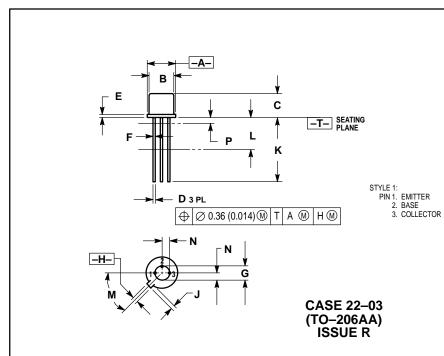




Figure 14. Saturation Voltage Limits

Figure 15. Typical Temperature Coefficients

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- CONTROLLING DIMENSION: INCH.
 DIMENSION J MEASURED FROM DIMENSION A
- DIMENSION F APPLIES BETWEEN DIMENSION P AND L. DIMENSION D APPLIES BETWEEN DIMENSION L AND K MINIMUM. LEAD DIAMETER IS UNCONTROLLED IN DIMENSION P AND
- BEYOND DIMENSION K MINIMUM.
 5. DIMENSION E INCLUDES THE TAB THICKNESS. (TAB THICKNESS IS 0.51(0.002) MAXIMUM).

•			. ,	,
	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.209	0.230	5.31	5.84
В	0.178	0.195	4.52	4.95
С	0.170	0.210	4.32	5.33
D	0.016	0.021	0.406	0.533
Е		0.030		0.762
F	0.016	0.019	0.406	0.483
G	0.100	0.100 BSC		BSC
Н	0.036	0.046	0.914	1.17
J	0.028	0.048	0.711	1.22
K	0.500		12.70	
L	0.250		6.35	
M	45 °BSC		45°	BSC
N	0.050	BSC	1.27	BSC
Р		0.050		1 27

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

